
Public

SMART CONTRACT AUDIT REPORT

for

ParaSwap

Prepared By: Xiaomi Huang

PeckShield
Jun 10, 2022

1/18 PeckShield Audit Report #: 2022-152

contact@peckshield.com

Public

Document Properties

Client ParaSwap
Title Smart Contract Audit Report
Target ParaSwap
Version 1.0
Author Shulin Bie
Auditors Shulin Bie, Xuxian Jiang
Reviewed by Xiaomi Huang
Approved by Xuxian Jiang
Classification Public

Version Info

Version Date Author(s) Description
1.0 Jun 10, 2022 Shulin Bie Final Release
1.0-rc April 22, 2022 Shulin Bie Release Candidate

Contact

For more information about this document and its contents, please contact PeckShield Inc.

Name Xiaomi Huang
Phone +86 183 5897 7782
Email contact@peckshield.com

2/18 PeckShield Audit Report #: 2022-152

Public

Contents

1 Introduction 4
1.1 About ParaSwap . 4
1.2 About PeckShield . 5
1.3 Methodology . 6
1.4 Disclaimer . 9

2 Findings 10
2.1 Summary . 10
2.2 Key Findings . 11

3 Detailed Results 12
3.1 Improper Logic Of SimpleSwapNFT::performSimpleBuyNFT() 12
3.2 Incompatibility With Deflationary/Rebasing Tokens 14
3.3 Inconsistency Between Implementation And Document 16

4 Conclusion 17

References 18

3/18 PeckShield Audit Report #: 2022-152

Public

1 | Introduction

Given the opportunity to review the design document and related smart contract source code of the
ParaSwap protocol, we outline in the report our systematic approach to evaluate potential security
issues in the smart contract implementation, expose possible semantic inconsistencies between smart
contract code and design document, and provide additional suggestions or recommendations for
improvement. Our results show that the given version of smart contracts can be further improved
due to the presence of several issues related to either security or performance. This document outlines
our audit results.

1.1 About ParaSwap

ParaSwap aggregates decentralized exchanges and other DeFi services in one comprehensive interface
to streamline and facilitate users’ interactions with decentralized finance (DeFi). In other words, it
is a middleware streamlining user’s interactions with various DeFi services. Specifically, it gathers
liquidity from the main decentralized exchanges together in a convenient interface abstracting most
of the swaps’ complexity to make it convenient and accessible for end-users. Additionally, ParaSwap
introduces a limit order mechanism, which supports the swap between any kind of tokens (e.g.,
ERC20 <-> ERC20, ERC20 <-> ERC721, ERC20 <-> ERC1155, etc.).

Table 1.1: Basic Information of ParaSwap

Item Description
Target ParaSwap

Website https://www.paraswap.io/
Type EVM Smart Contract

Language Solidity
Audit Method Whitebox

Latest Audit Report Jun 10, 2022

In the following, we show the Git repositories of reviewed files and the commit hash values used in

4/18 PeckShield Audit Report #: 2022-152

Public

this audit. In the first repository, our audit only covers the following contracts: fee/FeeClaimer.sol,
fee/FeeModel.sol, routers/SimpleSwap.sol, routers/ProtectedSimpleSwap.sol, routers/MultiPath.sol,
routers/ProtectedMultiPath.sol, routers/SimpleSwapNFT.sol, routers/OnERC721Received.sol, routers/

OnERC1155Received.sol, routers/ERC165.sol, routers/AugustusRFQRouter.sol, and lib/UtilsNFT.sol.

• https://github.com/paraswap/paraswap-contracts/tree/audit/fee-rfq-nft (8d461db)

• https://github.com/paraswap/paraswap-limit-orders.git (82683d3)

And these are the commit IDs after all fixes for the issues found in the audit have been checked
in:

• https://github.com/paraswap/paraswap-contracts/tree/audit/fee-rfq-nft (fe58b02)

• https://github.com/paraswap/paraswap-limit-orders.git (82683d3)

1.2 About PeckShield

PeckShield Inc. [5] is a leading blockchain security company with the goal of elevating the secu-
rity, privacy, and usability of current blockchain ecosystems by offering top-notch, industry-leading
services and products (including the service of smart contract auditing). We are reachable at Telegram
(https://t.me/peckshield), Twitter (http://twitter.com/peckshield), or Email (contact@peckshield.com).

Table 1.2: Vulnerability Severity Classification

Im
pa
ct

High Critical High Medium

Medium High Medium Low

Low Medium Low Low

High Medium Low

Likelihood

5/18 PeckShield Audit Report #: 2022-152

https://t.me/peckshield
http://twitter.com/peckshield
contact@peckshield.com

Public

1.3 Methodology

To standardize the evaluation, we define the following terminology based on OWASP Risk Rating
Methodology [4]:

• Likelihood represents how likely a particular vulnerability is to be uncovered and exploited in
the wild;

• Impact measures the technical loss and business damage of a successful attack;

• Severity demonstrates the overall criticality of the risk.

Likelihood and impact are categorized into three ratings: H, M and L, i.e., high, medium and
low respectively. Severity is determined by likelihood and impact and can be classified into four
categories accordingly, i.e., Critical, High, Medium, Low shown in Table 1.2.

To evaluate the risk, we go through a list of check items and each would be labeled with
a severity category. For one check item, if our tool or analysis does not identify any issue, the
contract is considered safe regarding the check item. For any discovered issue, we might further
deploy contracts on our private testnet and run tests to confirm the findings. If necessary, we would
additionally build a PoC to demonstrate the possibility of exploitation. The concrete list of check
items is shown in Table 1.3.

In particular, we perform the audit according to the following procedure:

• Basic Coding Bugs: We first statically analyze given smart contracts with our proprietary static
code analyzer for known coding bugs, and then manually verify (reject or confirm) all the issues
found by our tool.

• Semantic Consistency Checks: We then manually check the logic of implemented smart con-
tracts and compare with the description in the white paper.

• Advanced DeFi Scrutiny: We further review business logics, examine system operations, and
place DeFi-related aspects under scrutiny to uncover possible pitfalls and/or bugs.

• Additional Recommendations: We also provide additional suggestions regarding the coding and
development of smart contracts from the perspective of proven programming practices.

To better describe each issue we identified, we categorize the findings with Common Weakness
Enumeration (CWE-699) [3], which is a community-developed list of software weakness types to
better delineate and organize weaknesses around concepts frequently encountered in software devel-
opment. Though some categories used in CWE-699 may not be relevant in smart contracts, we use
the CWE categories in Table 1.4 to classify our findings.

6/18 PeckShield Audit Report #: 2022-152

Public

Table 1.3: The Full List of Check Items

Category Check Item

Basic Coding Bugs

Constructor Mismatch
Ownership Takeover

Redundant Fallback Function
Overflows & Underflows

Reentrancy
Money-Giving Bug

Blackhole
Unauthorized Self-Destruct

Revert DoS
Unchecked External Call

Gasless Send
Send Instead Of Transfer

Costly Loop
(Unsafe) Use Of Untrusted Libraries
(Unsafe) Use Of Predictable Variables
Transaction Ordering Dependence

Deprecated Uses
Semantic Consistency Checks Semantic Consistency Checks

Advanced DeFi Scrutiny

Business Logics Review
Functionality Checks

Authentication Management
Access Control & Authorization

Oracle Security
Digital Asset Escrow
Kill-Switch Mechanism

Operation Trails & Event Generation
ERC20 Idiosyncrasies Handling
Frontend-Contract Integration

Deployment Consistency
Holistic Risk Management

Additional Recommendations

Avoiding Use of Variadic Byte Array
Using Fixed Compiler Version
Making Visibility Level Explicit
Making Type Inference Explicit

Adhering To Function Declaration Strictly
Following Other Best Practices

7/18 PeckShield Audit Report #: 2022-152

Public

Table 1.4: Common Weakness Enumeration (CWE) Classifications Used in This Audit

Category Summary
Configuration Weaknesses in this category are typically introduced during

the configuration of the software.
Data Processing Issues Weaknesses in this category are typically found in functional-

ity that processes data.
Numeric Errors Weaknesses in this category are related to improper calcula-

tion or conversion of numbers.
Security Features Weaknesses in this category are concerned with topics like

authentication, access control, confidentiality, cryptography,
and privilege management. (Software security is not security
software.)

Time and State Weaknesses in this category are related to the improper man-
agement of time and state in an environment that supports
simultaneous or near-simultaneous computation by multiple
systems, processes, or threads.

Error Conditions,
Return Values,
Status Codes

Weaknesses in this category include weaknesses that occur if
a function does not generate the correct return/status code,
or if the application does not handle all possible return/status
codes that could be generated by a function.

Resource Management Weaknesses in this category are related to improper manage-
ment of system resources.

Behavioral Issues Weaknesses in this category are related to unexpected behav-
iors from code that an application uses.

Business Logics Weaknesses in this category identify some of the underlying
problems that commonly allow attackers to manipulate the
business logic of an application. Errors in business logic can
be devastating to an entire application.

Initialization and Cleanup Weaknesses in this category occur in behaviors that are used
for initialization and breakdown.

Arguments and Parameters Weaknesses in this category are related to improper use of
arguments or parameters within function calls.

Expression Issues Weaknesses in this category are related to incorrectly written
expressions within code.

Coding Practices Weaknesses in this category are related to coding practices
that are deemed unsafe and increase the chances that an ex-
ploitable vulnerability will be present in the application. They
may not directly introduce a vulnerability, but indicate the
product has not been carefully developed or maintained.

8/18 PeckShield Audit Report #: 2022-152

Public

1.4 Disclaimer

Note that this security audit is not designed to replace functional tests required before any software
release, and does not give any warranties on finding all possible security issues of the given smart
contract(s) or blockchain software, i.e., the evaluation result does not guarantee the nonexistence
of any further findings of security issues. As one audit-based assessment cannot be considered
comprehensive, we always recommend proceeding with several independent audits and a public bug
bounty program to ensure the security of smart contract(s). Last but not least, this security audit
should not be used as investment advice.

9/18 PeckShield Audit Report #: 2022-152

Public

2 | Findings

2.1 Summary

Here is a summary of our findings after analyzing the ParaSwap implementation. During the first
phase of our audit, we study the smart contract source code and run our in-house static code
analyzer through the codebase. The purpose here is to statically identify known coding bugs, and
then manually verify (reject or confirm) issues reported by our tool. We further manually review
business logic, examine system operations, and place DeFi-related aspects under scrutiny to uncover
possible pitfalls and/or bugs.

Severity # of Findings
Critical 0

High 1

Medium 0

Low 1

Informational 1

Total 3

We have so far identified a list of potential issues: some of them involve subtle corner cases
that might not be previously thought of, while others refer to unusual interactions among multiple
contracts. For each uncovered issue, we have therefore developed test cases for reasoning, reproduc-
tion, and/or verification. After further analysis and internal discussion, we determined a few issues
of varying severities that need to be brought up and paid more attention to, which are categorized in
the above table. More information can be found in the next subsection, and the detailed discussions
of each of them are in Section 3.

10/18 PeckShield Audit Report #: 2022-152

Public

2.2 Key Findings

Overall, these smart contracts are well-designed and engineered, though the implementation can be
improved by resolving the identified issues (shown in Table 2.1), including 1 high-severity vulnerability,
1 low-severity vulnerability, and 1 informational recommendation.

Table 2.1: Key ParaSwap Audit Findings

ID Severity Title Category Status
PVE-001 High Improper Logic Of SimpleSwap-

NFT::performSimpleBuyNFT()
Business Logic Fixed

PVE-002 Low Incompatibility With Deflation-
ary/Rebasing Tokens

Business Logic Confirmed

PVE-003 Informational Inconsistency Between Implementa-
tion And Document

Coding Practices Fixed

Beside the identified issues, we emphasize that for any user-facing applications and services, it is
always important to develop necessary risk-control mechanisms and make contingency plans, which
may need to be exercised before the mainnet deployment. The risk-control mechanisms should kick
in at the very moment when the contracts are being deployed on mainnet. Please refer to Section 3
for details.

11/18 PeckShield Audit Report #: 2022-152

Public

3 | Detailed Results

3.1 Improper Logic Of
SimpleSwapNFT::performSimpleBuyNFT()

• ID: PVE-001

• Severity: High

• Likelihood: High

• Impact: Medium

• Target: SimpleSwapNFT

• Category: Business Logic [2]

• CWE subcategory: CWE-841 [1]

Description

By gathering liquidity from the main decentralized exchanges together, ParaSwap is a middleware
streamlining user’s interactions with various DeFi services. Within the protocol, there is a constant
need of swapping from one token to another. The SimpleSwapNFT contract is exactly designed to swap
ERC20 token to ERC721 or ERC1155 token. In particular, the performSimpleBuyNFT() routine is designed
to buy ERC721 or ERC1155 token with the incoming ERC20 token. While examining its logic, we observe
there is an improper implementation that needs to be improved.

To elaborate, we show below the related code snippet of the SimpleSwapNFT contract. By design,
in the performSimpleBuyNFT() routine, in order to distinguish the bought token as ERC721 or ERC1155,
the low 160 bits (i.e., 0 - 159 bits) of the details.toToken are used to represent the token address and
the 161th bit (i.e., 160 bit) is used to represent the token type. However, it comes to our attention
that the 21th bit (i.e., 20 bit) of the details.toToken is incorrectly used (line 101) to distinguish
the bought token, which directly undermines the assumption of the ParaSwap design. Given this, we
suggest to correct the implementation as below: if ((details.toToken & (1 << 160))== 0) (line 101).

68 function performSimpleBuyNFT(
69 address [] memory callees ,
70 bytes memory exchangeData ,
71 uint256 [] memory startIndexes ,
72 uint256 [] memory values ,
73 address fromToken ,

12/18 PeckShield Audit Report #: 2022-152

Public

74 UtilsNFT.ToTokenNFTDetails [] memory toTokenDetails ,
75 uint256 fromAmount ,
76 uint256 expectedAmount ,
77 address payable partner ,
78 uint256 feePercent ,
79 bytes memory permit ,
80 address payable beneficiary
81) private returns (uint256 remainingAmount) {
82 require(msg.value == (fromToken == Utils.ethAddress () ? fromAmount : 0), "

Incorrect msg.value");
83 require(toTokenDetails.length > 0, "toTokenDetails can’t be empty");
84 require(callees.length + 1 == startIndexes.length , "Start indexes must be 1

greater then number of callees");
85 require(callees.length == values.length , "callees and values must have same

length");
86 require(_isTakeFeeFromSrcToken(feePercent), "fee on dest token not supported");
87
88 //If source token is not ETH than transfer required amount of tokens
89 //from sender to this contract
90 transferTokensFromProxy(fromToken , fromAmount , permit);
91
92 performCalls(callees , exchangeData , startIndexes , values);
93
94 // Slippage check is not require. If all the requested ERC721 and ERC1155
95 // are transferred correctly the swap should succeed.
96 for (uint256 i = 0; i < toTokenDetails.length; i++) {
97 UtilsNFT.ToTokenNFTDetails memory details = toTokenDetails[i];
98 // toToken is packed
99 // 0 - 19 bits: token address

100 // 20 bit: tokenType 0 -> ERC721 , 1 -> ERC1155
101 if ((details.toToken & (1 << 20)) == 0) {
102 UtilsNFT.transferTokens721(address(details.toToken), beneficiary ,

details.toTokenID);
103 } else {
104 UtilsNFT.transferTokens1155(address(details.toToken), beneficiary ,

details.toTokenID , details.toAmount);
105 }
106 }
107
108 // take slippage from src token
109 remainingAmount = Utils.tokenBalance(fromToken , address(this));
110 takeFromTokenFeeSlippageAndTransfer(
111 fromToken ,
112 fromAmount ,
113 expectedAmount ,
114 remainingAmount ,
115 partner ,
116 feePercent
117);
118
119 return remainingAmount;

13/18 PeckShield Audit Report #: 2022-152

Public

120 }

Listing 3.1: SimpleSwapNFT::performSimpleBuyNFT()

Recommendation Correct the implementation of the performSimpleBuyNFT() routine as above-
mentioned.

Status The issue has been addressed by the following commit: 592a96c.

3.2 Incompatibility With Deflationary/Rebasing Tokens

• ID: PVE-002

• Severity: Low

• Likelihood: Low

• Impact: Low

• Target: Multiple Contracts

• Category: Business Logic [2]

• CWE subcategory: CWE-841 [1]

Description

By design, the AugustusRFQRouter contract is one of the main entries for interaction with users, which
allows the user to swap ERC20 token to any kind of tokens (ERC20, ERC721, or ERC1155) via choosing a
limit order. The swapOnAugustusRFQ() routine is one of the representative routines. While examining its
logic, we observe the incoming token (i.e., order.takerAsset) is transferred to the AugustusRFQRouter

contract and then transferred to the maker of the limit order. This is reasonable under the assumption
that these transfers will always result in full transfer. Otherwise, the transaction will be reverted.

29 function swapOnAugustusRFQ(
30 IAugustusRFQ.Order calldata order ,
31 bytes calldata signature ,
32 uint8 wrapETH // set 0 bit to wrap src , and 1 bit to wrap dst
33) external payable {
34 address userAddress = address(uint160(order.nonceAndMeta));
35 require(userAddress == address (0) userAddress == msg.sender , "unauthorized user

");
36
37 uint256 fromAmount = order.takerAmount;
38 if (wrapETH & 1 != 0) {
39 require(msg.value == fromAmount , "Incorrect msg.value");
40 IWETH(weth).deposit{ value: fromAmount }();
41 } else {
42 require(msg.value == 0, "Incorrect msg.value");
43 tokenTransferProxy.transferFrom(order.takerAsset , msg.sender , address(this),

fromAmount);
44 }
45 Utils.approve(exchange , order.takerAsset , fromAmount);
46

14/18 PeckShield Audit Report #: 2022-152

https://github.com/paraswap/paraswap-contracts/commit/592a96c38abdaa304225783ed23970bd4d4129a1

Public

47 if (wrapETH & 2 != 0) {
48 IAugustusRFQ(exchange).fillOrder(order , signature);
49 uint256 receivedAmount = Utils.tokenBalance(order.makerAsset , address(this))

;
50 IWETH(weth).withdraw(receivedAmount);
51 Utils.transferETH(msg.sender , receivedAmount);
52 } else {
53 IAugustusRFQ(exchange).fillOrderWithTarget(order , signature , msg.sender);
54 }
55 }

Listing 3.2: AugustusRFQRouter::swapOnAugustusRFQ()

However, there exist other ERC20 tokens that may make certain customizations to their ERC20
contracts. One type of these tokens is deflationary tokens that charge certain fee for every transfer()

or transferFrom(). (Another type is rebasing tokens such as YAM.) As a result, this may not meet the
assumption behind these routines related to token transfer.

One possible mitigation is to measure the asset change right before and after the asset-transferring
routines. In other words, instead of bluntly assuming the amount parameter in transfer() or
transferFrom() will always result in full transfer, we need to ensure the increased or decreased amount
in the contract before and after the transfer() or transferFrom() is expected and aligned well with our
operation. Though these additional checks cost additional gas usage, we consider they are necessary
to deal with deflationary tokens or other customized ones if their support is deemed necessary.

Another mitigation is to regulate the set of ERC20 tokens that are permitted into ParaSwap.
In ParaSwap, it is indeed possible to effectively regulate the set of tokens that can be supported.
Keep in mind that there exist certain assets (e.g., USDT) that may have control switches that can be
dynamically exercised to suddenly become one.

Recommendation If current codebase needs to support possible deflationary tokens, it is better
to check the balance before and after the transfer()/transferFrom() call to ensure the book-keeping
amount is accurate. This support may bring additional gas cost. Also, keep in mind that certain
tokens may not be deflationary for the time being. However, they could have a control switch that
can be exercised to turn them into deflationary tokens. One example is the widely-adopted USDT.

Status The issue has been confirmed by the team.

15/18 PeckShield Audit Report #: 2022-152

Public

3.3 Inconsistency Between Implementation And Document

• ID: PVE-003

• Severity: Informational

• Likelihood: N/A

• Impact: N/A

• Target: AugustusRFQ

• Category: Business Logic [2]

• CWE subcategory: CWE-841 [1]

Description

In the ParaSwap protocol, the AugustusRFQ contract is one of the main entries for interaction with
users, which implements a limit order mechanism to support the swap between any kind of tokens.
In particular, the struct OrderNFT is used to record one limit order information. While examining
its logic, we notice there is a misleading comment embedded above its definition, which brings
unnecessary hurdles to understand and/or maintain the software.

To elaborate, we show below the related code snippet of the AugustusRFQ contract. By design, in
the struct OrderNFT, the low 160 bits (i.e., 0 - 159 bits) of the makerAsset and takerAsset represent
the asset address and the rest represent the token type. However, we notice the comments (lines 28
- 29) are “0 - 19 bits are address; 20 - 21 bits are tokenType (0 ERC20, 1 ERC1155, 2 ERC721)”. It
will bring unnecessary hurdles to understand the design.

27 // makerAsset and takerAsset are Packed structures
28 // 0 - 19 bits are address
29 // 20 - 21 bits are tokenType (0 ERC20 , 1 ERC1155 , 2 ERC721)
30 struct OrderNFT {
31 uint256 nonceAndMeta; // Nonce and taker specific metadata
32 uint128 expiry;
33 uint256 makerAsset;
34 uint256 makerAssetId; // simply ignored in case of ERC20s
35 uint256 takerAsset;
36 uint256 takerAssetId; // simply ignored in case of ERC20s
37 address maker;
38 address taker; // zero address on orders executable by anyone
39 uint256 makerAmount;
40 uint256 takerAmount;
41 }

Listing 3.3: AugustusRFQ

Recommendation Ensure the consistency between documents (including embedded comments)
and implementation.

Status The issue has been addressed by the following commit: fe58b02.

16/18 PeckShield Audit Report #: 2022-152

https://github.com/paraswap/paraswap-contracts/commit/fe58b020a40f1a4bb90686b972490ce8405a3589

Public

4 | Conclusion

In this audit, we have analyzed the ParaSwap design and implementation. ParaSwap aggregates decen-
tralized exchanges and other DeFi services in one comprehensive interface to streamline and facilitate
users’ interactions with decentralized finance (DeFi). In other words, it is a middleware streamlining
user’s interactions with various DeFi services. Specifically, it gathers liquidity from the main de-
centralized exchanges together in a convenient interface abstracting most of the swaps’ complexity
to make it convenient and accessible for end-users. Additionally, ParaSwap introduces a limit order
mechanism, which supports the swap between any kind of tokens. The current code base is well
structured and neatly organized. Those identified issues are promptly confirmed and addressed.

Meanwhile, we need to emphasize that smart contracts as a whole are still in an early, but exciting
stage of development. To improve this report, we greatly appreciate any constructive feedbacks or
suggestions, on our methodology, audit findings, or potential gaps in scope/coverage.

17/18 PeckShield Audit Report #: 2022-152

Public

References

[1] MITRE. CWE-841: Improper Enforcement of Behavioral Workflow. https://cwe.mitre.org/data/

definitions/841.html.

[2] MITRE. CWE CATEGORY: Business Logic Errors. https://cwe.mitre.org/data/definitions/840.

html.

[3] MITRE. CWE VIEW: Development Concepts. https://cwe.mitre.org/data/definitions/699.html.

[4] OWASP. Risk Rating Methodology. https://www.owasp.org/index.php/OWASP_Risk_Rating_

Methodology.

[5] PeckShield. PeckShield Inc. https://www.peckshield.com.

18/18 PeckShield Audit Report #: 2022-152

https://cwe.mitre.org/data/definitions/841.html
https://cwe.mitre.org/data/definitions/841.html
https://cwe.mitre.org/data/definitions/840.html
https://cwe.mitre.org/data/definitions/840.html
https://cwe.mitre.org/data/definitions/699.html
https://www.owasp.org/index.php/OWASP_Risk_Rating_Methodology
https://www.owasp.org/index.php/OWASP_Risk_Rating_Methodology
https://www.peckshield.com

	Introduction
	About ParaSwap
	About PeckShield
	Methodology
	Disclaimer

	Findings
	Summary
	Key Findings

	Detailed Results
	Improper Logic Of SimpleSwapNFT::performSimpleBuyNFT()
	Incompatibility With Deflationary/Rebasing Tokens
	Inconsistency Between Implementation And Document

	Conclusion
	References

