
Audit Report for Paraswap - July 22, 2021

Summary
Audit Report prepared by Solidified covering a subset of the Paraswap smart contracts for the
system’s v5 release.

Process and Delivery
Three (3) independent Solidified experts performed an unbiased and isolated audit of the code
below. The final debrief took place on 22 July 2021, and the results are presented here.

Audited Files

The source code has been supplied in the form of a private GitHub repository:

https://github.com/paraswap/paraswap-contracts/tree/feature/v5

Commit number: f615d82144b9390e1ffaf9ce1a0728bb5ea2424

The scope of the audit was limited to the following files:

original_contracts/AdapterStorageV5.sol
original_contracts/AugustusRegistry.sol
original_contracts/AugustusSwapperV5.sol
original_contracts/TokenTransferProxy.sol
original_contracts/lib/Utils.sol
original_contracts/fee/FeeModel.sol
original_contracts/routers/IRouter.sol
original_contracts/routers/ProtectedMultiPath.sol
original_contracts/routers/SimpleSwap.sol
original_contracts/routers/ZeroXV2.sol
original_contracts/routers/MultiPath.sol
original_contracts/routers/ProtectedSimpleSwap.sol
original_contracts/routers/Uniswap.sol
original_contracts/routers/ZeroXV4.sol
original_contracts/routers/helpers/SimpleSwapHelper.sol

Intended Behavior
The ParaSwap smart contracts implement the on-chain component of a DEX aggregator. The
audited components include single-path and multi-path token swap contracts and DEX router
adapters.

https://github.com/paraswap/paraswap-contracts/tree/feature/v5

Audit Report for Paraswap - July 22, 2021

Code Complexity and Test Coverage
Smart contract audits are an important step to improve the security of smart contracts
and can find many issues. However, auditing complex codebases has its limits and a
remaining risk is present (see disclaimer).

Users of a smart contract system should exercise caution. In order to help with the
evaluation of the remaining risk, we provide a measure of the following key indicators:
code complexity, code readability, level of documentation, and test coverage.

Note, that high complexity or lower test coverage does equate to a higher risk.
Certain bugs are more easily detected in unit testing than a security audit and
vice versa. It is, therefore, more likely that undetected issues remain if the test
coverage is low or non-existent.

Criteria Status Comment

Code complexity Medium -

Code readability and clarity Medium -

Level of Documentation Medium-low -

Test Coverage Medium -

Audit Report for Paraswap - July 22, 2021

Issues Found

Solidified found that the Paraswap contracts contain no critical issues, no major issues,
3 minor issues, 1 warning, in addition to 5 informational notes,.

We recommend all issues are amended, while the notes are up to the team’s discretion,
as they refer to best practices.

Issue # Description Severity Status

1 AugustusSwapper.sol and Utils.sol: Avoid using
hard-coded gas limits

Minor Pending

2 AugustusSwapper.sol: Function
initializeAdapter() fails to set the
adapterInitialized and adapterVsData mappings

Minor Pending

3 Protected*.sol: Does not return token and ether Minor Pending

4 AugustuSwapper.sol: AugustusSwapper might
misbehave with some ERC-20 tokens

Warning -

5 AugustusRegistry.sol: Contract does not support
unbanning a previously banned augustus

Note -

6 Code Repetition Note -

7 Missing validation for nested params Note -

8 Swap method assumes from and to tokens are
always different

Note -

9 Misc Notes Note -

Audit Report for Paraswap - July 22, 2021

Critical Issues

No critical issues have been found.

Major Issues

No major issues have been found.

Minor Issues

1. AugustusSwapper.sol and Utils.sol: Avoid using hard-coded
gas limits

The function transferTokens() limits gas forwarded to 10.000, in the case of ETH transfers.
Presumably, this is done to limit the possibility of a receiving smart contract misbehaving, for
example through a reentrancy attack.
However, it is generally bad practice to rely on gas costs for opcodes for this purpose, since
these may change and have changed in the past. Instead, reentrancy can be avoided using a
reentrancy guard (mutex). However, in this case, it does not seem necessary.

Recommendation
Do not limit gas forwarded in ETH transfers.

2. AugustusSwapper.sol: Function initializeAdapter() fails to set
the adapterInitialized and adapterVsData mappings

Function initializeAdapter() does not update the adapterInitialized mapping with the
newly initialized adapter, nor does it set adapterVsData.

Note
The same issue exists in function initializeRouter() with routerInitialized and
routerData.

Audit Report for Paraswap - July 22, 2021

3. Protected*.sol: Does not return token and ether

The function retrieve*() in contracts ProtectedMultiPath and ProtectedSimpleSwap do
not return both token and ether, whereas the contract supports both to be swapped.

Recommendation
Consider allowing the user to retrieve both ether and tokens for every swap using the protected
swap contracts.

Warnings

4. AugustuSwapper.sol: AugustusSwapper might misbehave
with some ERC-20 tokens

There are some ERC-20 implementations out there and some of them might cause unexpected
consequences, such as tokens that charge fees on transfer, malicious implementations, or
tokens that return false instead of reverting.

Recommendation
There’s not a particular way to deal with this. One option is to add a list of allowed tokens and
block execution to others. Another option is to keep this list in the user interface and warn users
if they are interacting with tokens that might misbehave.

Informative Notes

5. AugustusRegistry.sol: Contract does not support unbanning a
previously banned augustus

Consider adding a function that allows the unbanning of previously a banned augustus.

Audit Report for Paraswap - July 22, 2021

6. Code Repetition

The codebase replicates a number of functions and code segments, in particular, in the routers
implementations.

Examples:

Functions performSimpleSwap() and performSimpleBuy() in SimpleSwap.sol and
ProtectedSimpleSwap.sol.

This code organization makes the codebase larger than necessary and harder to maintain.

Recommendation
Consider refactoring the code to avoid replicated code segments.

7. Missing validation for nested params

The swap method in all routers uses complex data structures as a parameter and is missing
validations for most of the values passed through that parameter. This makes the contract
completely dependent on the input data for any failures and invalid transfers.

Recommendation
Consider adding more validations to such params.

8. Swap method assumes from and to tokens are always different

The _swapOn0xV2 method in the ZeroXV2 contract assumes the from and to token addresses
are different. Specifically if the from and to token address are the same as
Utils.ethAddress(), only one of it will be updated to weth and the method will try to swap the
token.

Recommendation
Consider checking if from and to tokens are the same.

Audit Report for Paraswap - July 22, 2021

9. Misc Notes

● FeeModel.sol: Constructor does not validate that partnerSharePercent and
maxFeePercent are less than 100%.

● FeeModel.sol: Function takeFeeAndTransferTokens() declares feeStructure as a
memory variable. Consider declaring it as storage instead to save on gas fees.

● AugustusStorage.sol: tokenTransferProxy should be declared as immutable since it’s
only assigned once in the descendant’s constructor.

● MultiPath.sol: Consider declaring functions multiSwap() and megaSwap() as external

instead of public to save on gas fees. The same is also applicable to
ProtectedMultiPath.protectedMultiSwap() and
ProtectedMultiPath.protectedMegaSwap().

● ZeroXV2.sol: Unused variable _fromToken in the method swapOnZeroXv2()

● ZeroXV2.sol: Performs unwanted casting to address type on the swap method.
Consider removing duplicate casting.

● MultiPath.sol: Consider checking if the path length is less than the uint8 max value
before converting the type in the method megaSwap.

● ZeroXV2.sol & ZeroXV4.sol: The method swapOnZeroXv2 and swapOnZeroXv4 are

not marked as payable methods.

Audit Report for Paraswap - July 22, 2021

Disclaimer

Solidified audit is not a security warranty, investment advice, or an endorsement of

Paraswap or its products. This audit does not provide a security or correctness

guarantee of the audited smart contract. Securing smart contracts is a multistep

process, therefore running a bug bounty program as a complement to this audit is

strongly recommended.

The individual audit reports are anonymized and combined during a debrief process, in

order to provide an unbiased delivery and protect the auditors of Solidified platform from

legal and financial liability.

Solidified Technologies Inc.

